
Math 2050A Test 2, 11 Nov

Answer the following four questions

1. (a) State without proof the Bolzano-Weierstrass Theorem (5);

(b) State the definition of Cauchy sequence (5);

(c) Prove that a sequence {xn}∞n=1 of real number is convergent if and only if it is
a Cauchy sequence. (10)

Solution:

(a) If a sequence {xn} is bounded, then there exists a subsequence of {xn} that is
convergent.

(b) A sequence is a Cauchy sequence if ∀ε > 0, ∃N , ∀m,n > N , |xm − xn| < ε.

(c) Suppose that {xn} is convergent and denote a = limxn. Then ∀ε > 0, ∃N ,
∀n > N , |xn − a| < ε/2. For m,n > N , |xm − xn| ≤ |xn − a| + |xm − a| < ε.
{xn} is Cauchy.

Suppose that {xn} is Cauchy. Then ∃N1 such that ∀m,n > N1, |xm − xn| <
1. Take m = N1 + 1. Then ∀n > N1, |xn − xN1+1| < 1, or equivalently,
xN1+1 − 1 < xn < xN1+1 + 1. Let M1 = min{x1, x2, ..., xN1 , xN1+1 + 1}, M2 =
max{x1, x2, ..., xN1 , xN1+1 + 1}. Then M1 ≤ xn ≤M2, ∀n. We know that {xn}
is bounded. By Bolzano-Weierstrass Theorem, there is a subsequence {xnk

}
that is convergent. Denote a = limxnk

.

Now fix ε > 0. Then ∃N1, ∀k > N1, |xnk
− a| < ε/2. Since {xn} is Cauchy,

∃N2, ∀k, n > N2, |xk − xn| < ε/2. Without loss of generality, we may assume
that N2 > N1. Since nk ≥ k, we also have |xnk

− xn| < ε/2 and |xn − a| ≤
|xnk
− a|+ |xn − xnk

< ε. Hence {xn} is convergent.

2. Using ε-δ terminology or the sequential criterion to show that

(a) lim
x→2

x2 + 2

x2 − 1
= 2 (10);

(b) lim
x→1,x>1

x2 + 2

x2 − 1
= +∞ (10);

(c) lim
x→+∞

x2 + 2

x2 − 1
= 1 (10).

Solution:

(a) |x
2 + 2

x2 − 1
− 2| = | x+ 2

x2 − 1
||x − 2|. When |x − 2| < 1

2
, | x+ 2

x2 − 1
| < 18

5
. For ε > 0,

let δ = min{1

2
,

5

18
ε}. Then |x − 2| < δ implies that |x

2 + 2

x2 − 1
− 2| < ε. Hence

lim
x→2

x2 + 2

x2 − 1
= 2.
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(b)
x2 + 2

x2 − 1
=

x2 + 2

x+ 1

1

x− 1
. When 1 < x < 2,

x2 + 2

x+ 1
> 1. For E > 0, let

δ = min{1, 1

E
+ 1}. Then 0 < x − 1 < δ implies that

x2 + 2

x2 − 1
> E. Hence

lim
x→1,x>1

x2 + 2

x2 − 1
= +∞.

(c) |x
2 + 2

x2 − 1
− 1| = | 3

x+ 1
|| 1

x− 1
| < 3

2(x− 1)
when x > 1. For ε > 0, let

M = max{1, 3

2ε
+ 1}. Then x > M implies that |x

2 + 2

x2 − 1
− 1| < ε. Hence

lim
x→+∞

x2 + 2

x2 − 1
= 1.

3. Suppose {an}∞n=1 and {bn}∞n=1 are two sequences of real numbers.

(a) Suppose 0 ≤ |an| < bn for all n ∈ N and
∑∞

n=1 bn is convergent, show that∑∞
n=1 an is convergent (10). (Remark: This is called the absolute convergence

test.)

(b) Prove the Dirichlet test by establishing the followings:

(i) (10) Show by mathematical induction that for n ≥ 2, we have

n∑
k=1

ak(bk+1 − bk) = anbn+1 − a1b1 −
n∑

k=2

bk(ak − ak−1).

(ii) (10) Suppose an is monotonic non-increasing (i.e. an+1 ≤ an for all n ∈ N),
limn→+∞ an = 0 and there exists M > 0 so that |

∑n
k=1 bk| ≤ M for all

n ∈ N. By using (a) and (b-i), show that the series
∑∞

n=1 anbn converges.
(Hint: Write

∑n
k=1 akbk as

∑n
k=1 ak(Bk − Bk−1) where Bm =

∑m
k=1 bk for

m ∈ N and B0 = 0.)

Solution:

(a) Let An =
∑n

k=1 ak and Bn =
∑n

k=1 bk. Since Bn is convergent, it is Cauchy,
and ∀ε > 0, ∃N , ∀m > n > N , |Bm − Bn| = bn+1 + · · · + bm < ε, and then
|Am−An| = |an+1 + · · ·+am| ≤ |an+1|+ · · ·+ |am| ≤ bn+1 + · · ·+ bm < ε. {An}
is Cauchy and thus converges.

(b) (i) For n = 2, a1(b2 − b1) + a2(b3 − b2) = a2b3 − a1b1 − b2(a2 − a1). Suppose
that the equality holds for n = m, then for n = m+ 1,

m+1∑
k=1

ak(bk+1 − bk) =
m∑
k=1

ak(bk+1 − bk) + am+1(bm+2 − bm+1)

= am+1bm+2 − a1b1 − bm+1(am+1 − am)−
m∑
k=2

bk(ak − ak−1)

= am+1bm+2 − a1b1 −
m+1∑
k=2

bk(ak − ak−1).
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(ii) We calculate that

n∑
k=1

akbk =
n∑

k=1

ak(Bk −Bk−1)

= anBn − a1B0 −
n∑

k=2

Bk−1(ak − ak−1)

= anBn −
n∑

k=2

Bk−1(ak − ak−1)

since B0 = 0. Now Bn is bounded and lim an = 0, so lim anBn = 0 (why?)
Note that |Bk−1(ak − ak−1)| < M(ak−1 − ak) and

∞∑
k=2

M(ak−1 − ak) = Ma1 − lim
n→∞

Man = Ma1.

By (i) we know that
∑∞

k=2Bk−1(ak−ak−1) is convergent. Hence
∑∞

k=1 akbk
is convergent.

4. Suppose f : R→ R is a function such that f(x+ y) = f(x) + f(y) for all x, y ∈ R.
If f has a limit L as x→ 0. Show that L = 0 and f has a limit at every c ∈ R.

Solution:

Repeatedly applying the condition f(x+ y) = f(x) + f(y) we obtain f(1) = f( 1
n

+

· · · + 1
n
) = nf( 1

n
), or f( 1

n
) =

f(1)

n
, ∀n ∈ N. If f has a limit L as x → 0, then

L = limn→∞ f( 1
n
) = limn→∞

f(1)

n
= 0 since f(1) is a constant.

From f(x + y) = f(x) + f(y) we also have f(x)− f(c) = f(x− c). Now for ε > 0,
∃δ > 0 such that |x − c| < δ implies that |f(x − c) − 0| = |f(x − c)| < ε, or
equivalently, |f(x)− f(c)| < ε. That is, limx→c f(x) = f(c).
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